Use este identificador para citar ou linkar para este item: http://repositorio.roca.utfpr.edu.br/jspui/handle/1/8298
Título: Análise de desempenho com algoritmos de grupos de frequência aplicados em sistemas autonômicos para proteção de redes de computadores
Autor(es): Morais, Vinícius Ribeiro
Orientador(es): Santos, Luiz Arthur Feitosa dos
Palavras-chave: Algorítmos computacionais
Mineração de dados (Computação)
Redes de computadores
Proteção de dados
Computer algorithms
Data mining
Computer networks
Data protection
Data do documento: 28-Nov-2017
Editor: Universidade Tecnológica Federal do Paraná
Câmpus: Campo Mourao
Referência: MORAIS, Vinícius Ribeiro. Análise de desempenho com algoritmos de grupos de frequência aplicados em sistemas autonômicos para proteção de redes de computadores. 2017. 46 f. Trabalho de Conclusão de Curso (Graduação) - Universidade Tecnológica Federal do Paraná, Campo Mourão, 2017.
Resumo: No contexto de computação autonômica, há um sistema chamado OpenFlow Intrusion Detection and Prevention System (Of-IDPS) que tem como objetivo detectar e reagir a ataques em redes analisando históricos de uso e alertas de segurança de forma autônoma com o mínimo de intervenção humana possível. Para isso, em sua arquitetura, o Of-IDPS depende de algoritmos de aprendizagem não-supervisionada relacionados à mineração de itens frequentes para gerar regras de segurança que são capazes de mitigar ataques que possam afetar a rede através das regras de segurança geradas. Assim, o objetivo deste trabalho visa melhorar o desempenho do Of-IDPS com o uso diferentes algoritmos de mineração de itens frequentes, para tentar melhorar o tempo de resposta do Of-IDPS e, consequentemente, ajudar no combate a ciberataques. Para analisar o desempenho, a avaliação destes algoritmos foi feita utilizando métricas como tempo e quantidade de memória gastos para a execução dos algoritmos. Para verificar o propósito desta pesquisa, os algoritmos foram submetidos a bases de dados sintéticas para serem avaliados e pré-selecionados. Após esta pré-seleção, os algoritmos que obtiveram os melhores resultados foram aplicados no Of-IDPS para serem analisados juntamente com um cenário de rede. Nos experimentos, obteve-se resultados que indicaram quais os melhores algoritmos, sendo esses: Apriori, LCMFreq e FP-Growth. Aplicando tais algoritmos no Of-IDPS, obteve-se uma melhora de 26% na contenção de pacotes maliciosos com o LCMFreq em comparação ao FP-Growth. Além disso, o LCMFreq mitigou 81,81% dos pacotes maliciosos em uma análise do cenário de rede com e sem a utilização do Of-IDPS, ou seja, com o LCMFreq a mitigação dos pacotes maliciosos foi maior e mais rápida em relação aos demais algoritmos. Por fim, foi possível afirmar que houve melhoras no desempenho do Of-IDPS com a utilização de novos algoritmos de frequência de itens.
Abstract: On the context of autonomic computing, there is a system called Of-IDPS that aims to detect and react to attacks from a network, by analyzing your usage history and security alerts autonomously, with the least possible human intervention. For this, in its architecture, the Of-IDPS depends of a unsupervised learning algorithm, related to frequent items mining, to generate security rules that are able to mitigate attacks that may affect the network through the generated security rules. Therefore, our work objective aims to improve Of-IDPS performance with the usage of differents items frequent mining algorithms, trying to improve the response time of Of-IDPS and consequently helping in the action against cyber threats. To analyze the performance, the evaluation of this algorithms was made using metrics like time and amount of memory spent in the execution of the algorithms. To verify the purpose of this research, the algorithms were submitted to synthetic databases, to be evaluated and preselected. After the preselection, the algorithms that got the best results were applied in the Of-IDPS, to be analyzed in a network scenario. In the experiments, the results obtained indicated the best algorithms, being these: Apriori, LCMFreq and FP-Growth. Applying these algorithms in the Of-IDPS resulted a 26% improvement in containment of malicious packets with the LCMFreq in comparison to FP-Growth. Besides that, the LCMFreq mitigated 81.81% of malicious packets in an analysis of the network scenario with and without the Of-IDPS, in other words, with the LCMFreq the mitigation of malicious packets was bigger and more faster than other algorithms. Thus, it was possible to affirm that there were improvements in the performance of the IDPS with the use of new algorithms of frequent items.
URI: http://repositorio.roca.utfpr.edu.br/jspui/handle/1/8298
Aparece nas coleções:CM - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
algoritmosprotecaoredecomputadores.pdf1,55 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.